Streamlining Transportation Corridor Planning Processes and Validating the Application of CRS&SI Technologies for Environmental Impact Assessments

Charles O’ Hara, MSU
Roger King, MSU
Jeremiah Dumas, MSU
Bethany Stich, MSU
Suyoung Seo, MSU
Colin Brooks, MTRI
Richard Wallace, MTRI
Bob Shuchman, MTRI
Demin Xiong, ORNL CTA
Patricia Hu, ORNL CTA
Bill Knee, ORNL CTA
Partners

Consortia Partners:

GeoResources Institute, Mississippi State University
MichiganTech Research Institute
Oak Ridge National Laboratory, NTRC and CTA

DOT Partners:

Mississippi DOT
Tennessee DOT
Michigan DOT
Advisory Panel Structure

- National Policy & Technical Review Panel
- MSU Project Research Team
- FHWA HQ Contract & Peer Review Support Team
- Local Advisory Panel

Initial Challenges and Opportunities Identified by Advisory Panel

- Executive Order 13274: Environmental Stewardship and Transportation Infrastructure Project Reviews and Associated Work Groups
- Ecosystem Approaches and Banking
- Watershed Approaches
- Cooperative Conservation
- Initial Scenario Planning
- GIS for Environmental Streamlining and Stewardship Workshops
- Programmatic Approaches to the Endangered Species Act
- Wildlife Crossings and Habitat Fragmentation
- Context Sensitive Solutions
- Green Highways Initiative
The new US DOT RITA program has selected MSU for addressing corridor planning and environmental assessment in new and innovative ways that can be compared to traditional approaches.

Our primary focus is on the application and validation of new and innovative approaches that can be compared to results of the EIS recently completed for I-69 segment 9. The results of this will enable adoption of methods and accelerate the acceptance and technology transfer needed to deliver the new technologies.
Existing MSU CRS&SI
EIS Streamlining Project Summary

New and innovative approaches to streamlining environmental and planning processes in transportation corridors projects will be demonstrated by the application of commercial remote sensing data and spatial information technologies. A consortium of research institutions led by Mississippi State University shall collaborate with partner DOT agencies to compare and quantify benefits of new and innovative approaches versus traditional methods for completing planning tasks in the EIS process. A completed EIS for a planned segment of I-69 that traverses areas around Memphis, TN, and Northwest Mississippi shall serve as the research test bed to quantify benefits delivered by the technology deployment project.

In addition to streamlining research, the project shall also address Hurricane Katrina lessons learned to derive nationally significant considerations and motivations toward enhanced geospatial preparedness for application to transportation planning practices.
Traditional EIS: I-69 SIU 9

A Final Environmental Impact Statement (FEIS) is completed for a segment of proposed Interstate 69 (I-69). The selected study will focus on Segment of Independent Utility 9 (SIU 9). The study corridor begins at the Interstate 55 (I-55) and Mississippi 304 (MS 304) Interchange in Hernando, Mississippi and extends north through Memphis, Tennessee to the intersection of US Highway 51 (US 51) and State Route 385 (SR 385) in Millington, Tennessee. The project is located in DeSoto and Marshall Counties in northwest Mississippi and Shelby and Fayette Counties in southwest Tennessee.
I-69 SIU 9 Study: The I-69/269 Corridor Study

Different planning and environmental challenges were noted in various segments within the project area. These segments provide an ideal set of test beds for analysis and a basis for conducting direct comparative studies.
Project Activities and Coordination

- Twelve team tasks and activities are specified in the proposal.
- A kick-off meeting was conducted to initiate activities and refine plans and approaches for activities. An “Initial Findings” report has been prepared and submitted that addresses areas where additional resources would enable enhanced capabilities to meet national objectives.
- “Synthesis Reports” are being prepared to present the traditional approach to each task and describe how new and innovative methods and technologies may be adapted to the task. Sponsor and advisory panel input will guide refinement of activities to focus on areas of national importance.
- All tasks and activities will involve close coordination and collaboration among team members, the advisory panel, DOTs, and consultants.
- Data exchange and generated data analysis products will be shared with DOTs and project partners.
- Each technical task will involve developing final reports and preparation of materials for technical conference presentation and/or journal publication.
NCRST-E Background

- Mississippi State University led the former NCRST-E Consortium.
- Work highlighted in NCHRP 25-22(2).
- AASHTO Invited Speaker: August, 2007 “Remote Sensing Data and Applications for Environmental Analysis in Corridor Planning”
- Innovative applications of multi-source commercial remote sensing data, collected early in project processes to deliver benefits to many aspects of project work.
Key NCRST-E Milestones

- Results were highlighted in NCHRP 25-22(2)
- Conducted multiple demonstration projects
- Partnered closely with DOTs in many projects
- Communicated needs to data vendors for products
- Applied multi-source remote sensing data
- Innovative uses of hyperspectral image data
- Innovative uses of LIDAR data
- Innovative data-fusion for wetlands modeling
- Validation of satellite and aerial image data
- Application of results to corridor planning projects
- Assisted with Hurricane Katrina response
- Compiled Katrina RS data for long-term use
- Regional data acquisition for cooperative research
NCRST-E Activities

Aerial Remote Sensing Data Collection → Information Products

- Land Cover
- Terrain Models
- Wetlands
- Habitat
- Hydrology

National Consortium for Remote Sensing in Transportation Streamlining Environmental and Planning Processes
Hyperspectral Image Data

Hyperspectral Image Data Benefits

- Many narrow spectral bands offers the ability to separate land cover features.
- Hyperspectral image data provide subtle spectral signatures of terrestrial targets.
- Using hyperspectral information enables ‘unmixing’ of pixels, thus improving confidence in classification results.
NCRST-E LIDAR Applications

- LIDAR Digital Surface Model
- LIDAR Bare-Earth Terrain Model
- LIDAR Derived Extracted Features

LIDAR Data Applications

- Hydrologic analysis
- Riparian zone analysis
- Wetlands analysis
- Flood plain mapping
- Cut and fill estimates
- Vertically optimizing final alignments
- Estimation of stream impacts
- Slope and terrain analysis
New Data and Enhanced Analysis: Wetland Mapping Analysis Based on Surrogate Representations From Remote Sensing Data Processing

- The assessment of vegetation, soils, and hydrology forms the basis of standard wetlands field assessment work.
- Determining how those assessments are made facilitates the development of surrogate processes using RS and geospatial technologies within algorithms developed to produce similar analytical map-based results.
ORNL Research Background

- Characterization and Attribution of Interconnected Multimodal Transportation Networks for the Selected Transportation Corridor
- Deliverable: An Analytical Multimodal Network for the Project Corridor
- Decision Support for Transportation Planning Options and Environment Assessments
- Deliverable: An Application Demonstration and the Overall Technical Report for the Project
MTRI Research Background

- Utilize wetlands mitigation site suitability index
- Map transportation-focused updated land cover including wetlands
- Characterize hydrology hydrologic high-resolution elevation data
- Map potential rare species habitat
- Demonstrate methods for estimating Annual Average Daily Traffic (AADT) using remotely sensed imagery

Hydrologic Analysis AADT Estimations
Initial Findings: Sponsor/Advisory Panel Input, Questions, and Suggestions

- Refine task descriptions to define specific phases of the corridor planning process? Are we looking at planning, NEPA, location, design, etc.
- Can we provide tools and data to early planning process that can feed into the NEPA process and be supplemented by additional tools and data?
- Enhanced data utilized in the NEPA process feeds back to planning and can enable improved long-term / future planning activities.

- Pre-NEPA consultation is a ripe area for RS data and tools that can be linked into pre-NEPA activities. This is a critical gap that can be addressed / filled. This is specific focus of SAFETEA-LU.

Action Items

- Rework the task list and refine task descriptions to more aptly indicate process phase.
- Action Item: Provide improved NEPA diagram to comply w/ 6002.
Observed NEPA Linkages & Program Opportunities

- Improve travel demand – inject technologies into simulation models for enhanced predictive capabilities
- Enhance visualization techniques for planning and EIS audiences
- Consider linkage and integrated applicability of tools and technologies to varying project processes and organizational entities of practitioners
- Include qualitative measures in results
- Identify benefits for saving costs
- Reducing processing time and costs
- Improve quality of product
- Readily accessible data in usable format

- Develop generic/transferable tools such as archaeological site identifications
- Delays increase overall project costs mainly in row costs and lost mitigation opportunities
- NEPA is a risk management process that may be enhanced by products of RS
Matrix of Impacts

Quantity of Displacements

<table>
<thead>
<tr>
<th>Alternatives</th>
<th>A-1</th>
<th>A-2</th>
<th>B-1</th>
<th>B-2</th>
<th>H-1</th>
<th>A-3</th>
<th>B-3</th>
<th>H-3</th>
<th>A-4</th>
<th>B-4</th>
<th>H-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Length (miles)</td>
<td>15.2</td>
<td>15.3</td>
<td>28.6</td>
<td>30.8</td>
<td>26.6</td>
<td>43.8</td>
<td>45.8</td>
<td>41.8</td>
<td>43.9</td>
<td>45.9</td>
<td>41.9</td>
</tr>
<tr>
<td>Right-of-Way Dispersions (ft)</td>
<td>739</td>
<td>798</td>
<td>1479</td>
<td>1552</td>
<td>1406</td>
<td>2218</td>
<td>2491</td>
<td>2145</td>
<td>2279</td>
<td>2330</td>
<td>2209</td>
</tr>
<tr>
<td>Family Displacements</td>
<td>221</td>
<td>400</td>
<td>64</td>
<td>55</td>
<td>52</td>
<td>85</td>
<td>74</td>
<td>73</td>
<td>117</td>
<td>113</td>
<td>1127</td>
</tr>
<tr>
<td>Business Displacements</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>3</td>
<td>11</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Non-Residential Displacements</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Taxable (acres)</td>
<td>128</td>
<td>95</td>
<td>435</td>
<td>407</td>
<td>253</td>
<td>706</td>
<td>625</td>
<td>381</td>
<td>530</td>
<td>592</td>
<td>348</td>
</tr>
<tr>
<td>Service Corridors</td>
<td>52</td>
<td>50</td>
<td>50</td>
<td>46</td>
<td>57</td>
<td>60</td>
<td>58</td>
<td>58</td>
<td>50</td>
<td>66</td>
<td>57</td>
</tr>
<tr>
<td>Potential Linear Feet of Stream</td>
<td>5,960</td>
<td>8,620</td>
<td>15,780</td>
<td>20,980</td>
<td>13,850</td>
<td>25,370</td>
<td>30,570</td>
<td>23,440</td>
<td>24,400</td>
<td>29,650</td>
<td>22,470</td>
</tr>
<tr>
<td>Easements (ft)</td>
<td>68</td>
<td>53</td>
<td>69</td>
<td>71</td>
<td>6</td>
<td>117</td>
<td>99</td>
<td>54</td>
<td>122</td>
<td>106</td>
<td>75</td>
</tr>
<tr>
<td>Historic Properties Impacted</td>
<td>0</td>
</tr>
<tr>
<td>Recorded Archeological Sites</td>
<td>11</td>
<td>9</td>
<td>20</td>
<td>22</td>
<td>15</td>
<td>31</td>
<td>33</td>
<td>26</td>
<td>20</td>
<td>31</td>
<td>24</td>
</tr>
<tr>
<td>Archeological Sites</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Landfill Sites</td>
<td>11</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Impacted Noise Recipient Sites</td>
<td>3</td>
<td>39</td>
<td>50</td>
<td>68</td>
<td>431</td>
<td>73</td>
<td>71</td>
<td>461</td>
<td>60</td>
<td>97</td>
<td>721</td>
</tr>
<tr>
<td>Construction Cost ($ million)</td>
<td>233.4</td>
<td>260.4</td>
<td>284.9</td>
<td>346.5</td>
<td>346.9</td>
<td>649.9</td>
<td>592.5</td>
<td>357.3</td>
<td>344.4</td>
<td>344.3</td>
<td>344.3</td>
</tr>
<tr>
<td>Right-of-Way Cost ($ million)</td>
<td>18.4</td>
<td>43.6</td>
<td>68.6</td>
<td>76.1</td>
<td>60.7</td>
<td>107.0</td>
<td>114.5</td>
<td>59.2</td>
<td>112.2</td>
<td>119.5</td>
<td>104.4</td>
</tr>
<tr>
<td>Utility Cost ($ million)</td>
<td>2.0</td>
<td>5.1</td>
<td>4.9</td>
<td>5.4</td>
<td>4.3</td>
<td>7.7</td>
<td>6.2</td>
<td>7.1</td>
<td>8.0</td>
<td>8.6</td>
<td>7.5</td>
</tr>
<tr>
<td>Total Cost ($ million)</td>
<td>274.6</td>
<td>311.4</td>
<td>396.0</td>
<td>490.0</td>
<td>543.3</td>
<td>643.8</td>
<td>699.6</td>
<td>438.6</td>
<td>514.8</td>
<td>556.2</td>
<td>524.8</td>
</tr>
</tbody>
</table>

*Notes:
1. The data was updated based on the Draft EIS to reflect the most recent commentaries.
2. The final EIS estimated the total cost for all affected sites.
3. The total cost includes all impacts, including air quality, noise, and traffic.
4. The cost was estimated using a 30-year time horizon.*
Identify low-hanging fruit for injecting data/tools/technologies into pre-NEPA processes that will enable enhanced screening/constraints analysis as well as identification of avoidance areas that are mutually understood by DOT and resource agencies.

Develop strategies/methods for communicating, visualizing, exchanging specific resource agency issues of concern for a given project and collection of resource agencies so that key resource agency concerns can be rapidly quantified and mitigation options presented.

Look at things like the 20 year plan to identify opportunities to “get ahead” of environmental issues that can not be easily minimized and develop basis for common agreement with resource agencies that these are viable directions.

Provide data to enable an informed conversation. Other issues will be raised and documented as they arise, but these “data enabled” decision processes may benefit significantly from appropriate injection of data/tools/and applicable products.

Injecting qualitative attribution to the matrix of impacts as well as contextual basis for evaluating relative impacts for alternative assessment – “context and intensity.”
Key New Activities: Linking Planning and Environmental Processes

- A system approach is proposed to integrate transportation, economic, environmental, and policy analysis approaches with RSSI technologies and transportation project development activities to deliver enhanced consideration of the built environment and enhanced overall streamlining benefits.

- Integrated use of new technologies within a RSSI technology framework will demonstrate the benefits of integrating the use of advanced tools and spatial data, and will provide key providing connections between system-level planning and project-level decisions. A key aspect of this demonstration will be to show that it provides DOTs the ability to integrate statewide and metropolitan transportation planning with the NEPA process to streamline project delivery.
Systems Approach

- Traffic simulation results based upon proposed project alternatives will be used to feed environmental simulation models such as new air quality models, to provide enhanced mobility/congestion data, and to provide improved data to policy and economic analysis models.

- The policy and economic models may provide insight about population dynamics which in turn may be used to update traffic simulation results. Through an iterative “feedback” process, analyses results will converge for a selected alternative to better quantify the overall impacts on the human and natural environments.
Conclusions

• The project team looks forward to directions, guidance, and feedback from the advisory panel and to communications, exchange, and collaborations with practitioner communities.
• A web site for the project will soon be available with enhanced capabilities for capturing input and enabling exchange among researchers and practitioners.
• Please feel free to send your questions, comments, and/or suggestions.

Thank You!
Chuck O’Hara
cgohara@gri.msstate.edu